Photoelectrochemical water oxidation by screen printed ZnO nanoparticle films: effect of pH on catalytic activity and stability.
نویسندگان
چکیده
Nanostructured ZnO films are promising photoanode materials in photoelectrochemical water splitting. While such ZnO photoanodes have achieved high activity and good light conversion efficiency in the UV spectral region, their application in water splitting devices has been hampered by the susceptibility of ZnO towards photocorrosion in aqueous electrolytes. We report a systematic investigation aimed at optimising the electrolyte solution to improve the long-term stability of ZnO photoanodes. A stability diagram, based on the band edge positions of ZnO and the pH-dependent photodegradation potentials of ZnO (relative to the decomposition of water), indicates that the optimum pH operating conditions for ZnO photoanodes lie between pH 9-12.5. To verify this prediction experimentally, the activity and long-term stability of uniform screen-printed nano-ZnO films was tested in a wide range of buffered and non-buffered electrolytes (pH 6-13.5). The ZnO films were more active in buffered, than in non-buffered electrolytes, and the highest activities were observed close to the pKa of the phosphate and borate buffers used. Under zero applied potential, these screen-printed films achieved the highest reported photocurrents to date (0.42 mA cm(-2) at pH 6 and 0.67 mA cm(-2) at pH 10.5) for any pristine or modified ZnO-based water oxidation catalyst. The films were subjected to 12 h of controlled potential electrolysis, in selected electrolytes, under AM 1.5G simulated sunlight. The results are in good agreement with calculations based on thermodynamic data for ZnO. Films tested at pH 6 and 7 (representing typically used operating conditions) degraded rapidly, whereas they exhibited the highest stability when tested in a pH 10.5 borate buffer. In this case, 75% of the initial photoactivity was preserved after 12 hours, indicating that the lifetime of the electrode could be increased by over an order of magnitude compared to standard testing conditions.
منابع مشابه
Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملVoltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملDesign of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols
We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...
متن کاملSynthesis of zinc oxide nanoparticle by zinc acetate precursor and study on its catalytic properties
ZnO nanoparticles have been prepared by a simple method in a short period of time. In this synthetic method, the sample was obtained using Zn(CH3COO)2·2H2O and a new template of hexamine salt. Their crystalline structure and morphology were studied by XRD and SEM. The optical properties of the sample were studied by UV–visible spectroscopy. The absorption spectr...
متن کاملCorrection: Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
Correction for 'Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films' by Isvar A. Cordova, et al., Nanoscale, 2015, 7, 8584-8592.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 13 شماره
صفحات -
تاریخ انتشار 2014